Process & Analyze LinkedIn Ads Data in Azure Databricks

Ready to get started?

Download for a free trial:

Download Now

Learn more:

LinkedIn Ads JDBC Driver

Rapidly create and deploy powerful Java applications that integrate with LinkedIn Ads.



Host the CData JDBC Driver for LinkedIn Ads in Azure and use Databricks to perform data engineering and data science on live LinkedIn Ads data.

Databricks is a cloud-based service that provides data processing capabilities through Apache Spark. When paired with the CData JDBC Driver, customers can use Databricks to perform data engineering and data science on live LinkedIn Ads data. This article walks through hosting the CData JDBC Driver in Azure, as well as connecting to and processing live LinkedIn Ads data in Databricks.

With built-in optimized data processing, the CData JDBC Driver offers unmatched performance for interacting with live LinkedIn Ads data. When you issue complex SQL queries to LinkedIn Ads, the driver pushes supported SQL operations, like filters and aggregations, directly to LinkedIn Ads and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations). Its built-in dynamic metadata querying allows you to work with and analyze LinkedIn Ads data using native data types.

Install the CData JDBC Driver in Azure

To work with live LinkedIn Ads data in Databricks, install the driver on your Azure cluster.

  1. Navigate to your Databricks administration screen and select the target cluster.
  2. On the Libraries tab, click "Install New."
  3. Select "Upload" as the Library Source and "Jar" as the Library Type.
  4. Upload the JDBC JAR file (cdata.jdbc.linkedinads.jar) from the installation location (typically C:\Program Files\CData\CData JDBC Driver for LinkedIn Ads\lib).

Connect to LinkedIn Ads from Databricks

With the JAR file installed, we are ready to work with live LinkedIn Ads data in Databricks. Start by creating a new notebook in your workspace. Name the notebook, select Python as the language (though Scala is available as well), and choose the cluster where you installed the JDBC driver. When the notebook launches, we can configure the connection, query LinkedIn Ads, and create a basic report.

Configure the Connection to LinkedIn Ads

Connect to LinkedIn Ads by referencing the class for the JDBC Driver and constructing a connection string to use in the JDBC URL. Additionally, you will need to set the RTK property in the JDBC URL (unless you are using a Beta driver). You can view the licensing file included in the installation for information on how to set this property.

driver = "cdata.jdbc.linkedinads.LinkedInAdsDriver"
url = "jdbc:linkedinads:RTK=5246...;OAuthClientId=MyOAuthClientId;OAuthClientSecret=MyOAuthClientSecret;CallbackURL=http://localhost:portNumber;InitiateOAuth=GETANDREFRESH"

Built-in Connection String Designer

For assistance in constructing the JDBC URL, use the connection string designer built into the LinkedIn Ads JDBC Driver. Either double-click the JAR file or execute the jar file from the command-line.

java -jar cdata.jdbc.linkedinads.jar

Fill in the connection properties and copy the connection string to the clipboard.

LinkedIn Ads uses the OAuth authentication standard. OAuth requires the authenticating user to interact with LinkedIn using the browser. See the OAuth section in the Help documentation for a guide.

Load LinkedIn Ads Data

Once the connection is configured, you can load LinkedIn Ads data as a dataframe using the CData JDBC Driver and the connection information.

remote_table = spark.read.format ( "jdbc" ) \
	.option ( "driver" , driver) \
	.option ( "url" , url) \
	.option ( "dbtable" , "Analytics") \
	.load ()

Display LinkedIn Ads Data

Check the loaded LinkedIn Ads data by calling the display function.

display (remote_table.select ("VisibilityCode"))

Analyze LinkedIn Ads Data in Azure Databricks

If you want to process data with Databricks SparkSQL, register the loaded data as a Temp View.

remote_table.createOrReplaceTempView ( "SAMPLE_VIEW" )

The SparkSQL below retrieves the LinkedIn Ads data for analysis.

% sql

SELECT VisibilityCode, Comment FROM Analytics WHERE EntityId = '238'

The data from LinkedIn Ads is only available in the target notebook. If you want to use it with other users, save it as a table.

remote_table.write.format ( "parquet" ) .saveAsTable ( "SAMPLE_TABLE" )

Download a free, 30-day trial of the CData JDBC Driver for LinkedIn Ads and start working with your live LinkedIn Ads data in Apache NiFi. Reach out to our Support Team if you have any questions.