Use Dash to Build to Web Apps on Power BI XMLA Data

Ready to get started?

Download for a free trial:

Download Now

Learn more:

Power BI XMLA Python Connector

Python Connector Libraries for Power BI XMLA Data Connectivity. Integrate Power BI XMLA with popular Python tools like Pandas, SQLAlchemy, Dash & petl.



The CData Python Connector for Power BI XMLA enables you to create Python applications that use pandas and Dash to build Power BI XMLA-connected web apps.

The rich ecosystem of Python modules lets you get to work quickly and integrate your systems more effectively. With the CData Python Connector for Power BI XMLA, the pandas module, and the Dash framework, you can build Power BI XMLA-connected web applications for Power BI XMLA data. This article shows how to connect to Power BI XMLA with the CData Connector and use pandas and Dash to build a simple web app for visualizing Power BI XMLA data.

With built-in, optimized data processing, the CData Python Connector offers unmatched performance for interacting with live Power BI XMLA data in Python. When you issue complex SQL queries from Power BI XMLA, the driver pushes supported SQL operations, like filters and aggregations, directly to Power BI XMLA and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations).

Connecting to Power BI XMLA Data

Connecting to Power BI XMLA data looks just like connecting to any relational data source. Create a connection string using the required connection properties. For this article, you will pass the connection string as a parameter to the create_engine function.

To connect, set the Url property to a valid PowerBIXMLA workspace. For instance, powerbi://api.powerbi.com/v1.0/myorg/CData.

After installing the CData Power BI XMLA Connector, follow the procedure below to install the other required modules and start accessing Power BI XMLA through Python objects.

Install Required Modules

Use the pip utility to install the required modules and frameworks:

pip install pandas
pip install dash
pip install dash-daq

Visualize Power BI XMLA Data in Python

Once the required modules and frameworks are installed, we are ready to build our web app. Code snippets follow, but the full source code is available at the end of the article.

First, be sure to import the modules (including the CData Connector) with the following:

import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.powerbixmla as mod
import plotly.graph_objs as go

You can now connect with a connection string. Use the connect function for the CData Power BI XMLA Connector to create a connection for working with Power BI XMLA data.

cnxn = mod.connect("URL=powerbi://api.powerbi.com/v1.0/myorg/CData;InitiateOAuth=GETANDREFRESH;OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")")

Execute SQL to Power BI XMLA

Use the read_sql function from pandas to execute any SQL statement and store the result set in a DataFrame.

df = pd.read_sql("SELECT Country, Education FROM Customer WHERE Country = 'Australia'", cnxn)

Configure the Web App

With the query results stored in a DataFrame, we can begin configuring the web app, assigning a name, stylesheet, and title.

app_name = 'dash-powerbixmlaedataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'

Configure the Layout

The next step is to create a bar graph based on our Power BI XMLA data and configure the app layout.

trace = go.Bar(x=df.Country, y=df.Education, name='Country')

app.layout = html.Div(children=[html.H1("CData Extension + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(title='Power BI XMLA Customer Data', barmode='stack')
		})
], className="container")

Set the App to Run

With the connection, app, and layout configured, we are ready to run the app. The last lines of Python code follow.

if __name__ == '__main__':
    app.run_server(debug=True)

Now, use Python to run the web app and a browser to view the Power BI XMLA data.

python powerbixmla-dash.py

Free Trial & More Information

Download a free, 30-day trial of the Power BI XMLA Python Connector to start building Python apps with connectivity to Power BI XMLA data. Reach out to our Support Team if you have any questions.



Full Source Code

import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.powerbixmla as mod
import plotly.graph_objs as go

cnxn = mod.connect("URL=powerbi://api.powerbi.com/v1.0/myorg/CData;InitiateOAuth=GETANDREFRESH;OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")

df = pd.read_sql("SELECT Country, Education FROM Customer WHERE Country = 'Australia'", cnxn)
app_name = 'dash-powerbixmladataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'
trace = go.Bar(x=df.Country, y=df.Education, name='Country')

app.layout = html.Div(children=[html.H1("CData Extension + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(title='Power BI XMLA Customer Data', barmode='stack')
		})
], className="container")

if __name__ == '__main__':
    app.run_server(debug=True)