Use Dash to Build to Web Apps on EventBrite Data



Create Python applications that use pandas and Dash to build EventBrite-connected web apps.

The rich ecosystem of Python modules lets you get to work quickly and integrate your systems more effectively. With the CData API Driver for Python, the pandas module, and the Dash framework, you can build EventBrite-connected web applications for EventBrite data. This article shows how to connect to EventBrite with the CData Connector and use pandas and Dash to build a simple web app for visualizing EventBrite data.

With built-in, optimized data processing, the CData Python Connector offers unmatched performance for interacting with live EventBrite data in Python. When you issue complex SQL queries from EventBrite, the driver pushes supported SQL operations, like filters and aggregations, directly to EventBrite and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations).

Connecting to EventBrite Data

Connecting to EventBrite data looks just like connecting to any relational data source. Create a connection string using the required connection properties. For this article, you will pass the connection string as a parameter to the create_engine function.

Start by setting the Profile connection property to the location of the EventBrite Profile on disk (e.g. C:\profiles\EventBrite.apip). Next, set the ProfileSettings connection property to the connection string for EventBrite (see below).

EventBrite API Profile Settings

To use authenticate to EventBrite, you can find your Personal Token in the API Keys page of your EventBrite Account. Set the APIKey to your personal token in the ProfileSettings connection property.

After installing the CData EventBrite Connector, follow the procedure below to install the other required modules and start accessing EventBrite through Python objects.

Install Required Modules

Use the pip utility to install the required modules and frameworks:

pip install pandas
pip install dash
pip install dash-daq

Visualize EventBrite Data in Python

Once the required modules and frameworks are installed, we are ready to build our web app. Code snippets follow, but the full source code is available at the end of the article.

First, be sure to import the modules (including the CData Connector) with the following:

import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.api as mod
import plotly.graph_objs as go

You can now connect with a connection string. Use the connect function for the CData EventBrite Connector to create a connection for working with EventBrite data.

cnxn = mod.connect("Profile=C:\profiles\Eventbrite.apip;ProfileSettings='APIKey=my_api_token';")

Execute SQL to EventBrite

Use the read_sql function from pandas to execute any SQL statement and store the result set in a DataFrame.

df = pd.read_sql("SELECT Id, Name FROM Events WHERE Status = 'live'", cnxn)

Configure the Web App

With the query results stored in a DataFrame, we can begin configuring the web app, assigning a name, stylesheet, and title.

app_name = 'dash-apiedataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'

Configure the Layout

The next step is to create a bar graph based on our EventBrite data and configure the app layout.

trace = go.Bar(x=df.Id, y=df.Name, name='Id')

app.layout = html.Div(children=[html.H1("CData Extension + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(title='EventBrite Events Data', barmode='stack')
		})
], className="container")

Set the App to Run

With the connection, app, and layout configured, we are ready to run the app. The last lines of Python code follow.

if __name__ == '__main__':
    app.run_server(debug=True)

Now, use Python to run the web app and a browser to view the EventBrite data.

python api-dash.py

Free Trial & More Information

Download a free, 30-day trial of the CData API Driver for Python to start building Python apps with connectivity to EventBrite data. Reach out to our Support Team if you have any questions.



Full Source Code

import os
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import cdata.api as mod
import plotly.graph_objs as go

cnxn = mod.connect("Profile=C:\profiles\Eventbrite.apip;ProfileSettings='APIKey=my_api_token';")

df = pd.read_sql("SELECT Id, Name FROM Events WHERE Status = 'live'", cnxn)
app_name = 'dash-apidataplot'

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'CData + Dash'
trace = go.Bar(x=df.Id, y=df.Name, name='Id')

app.layout = html.Div(children=[html.H1("CData Extension + Dash", style={'textAlign': 'center'}),
	dcc.Graph(
		id='example-graph',
		figure={
			'data': [trace],
			'layout':
			go.Layout(title='EventBrite Events Data', barmode='stack')
		})
], className="container")

if __name__ == '__main__':
    app.run_server(debug=True)

Ready to get started?

Connect to live data from EventBrite with the API Driver

Connect to EventBrite