Process & Analyze Teradata Data in Azure Databricks

Ready to get started?

Download for a free trial:

Download Now

Learn more:

Teradata JDBC Driver

Rapidly create and deploy powerful Java applications that integrate with Teradata databases.



Host the CData JDBC Driver for Teradata in Azure and use Databricks to perform data engineering and data science on live Teradata data.

Databricks is a cloud-based service that provides data processing capabilities through Apache Spark. When paired with the CData JDBC Driver, customers can use Databricks to perform data engineering and data science on live Teradata data. This article walks through hosting the CData JDBC Driver in Azure, as well as connecting to and processing live Teradata data in Databricks.

With built-in optimized data processing, the CData JDBC Driver offers unmatched performance for interacting with live Teradata data. When you issue complex SQL queries to Teradata, the driver pushes supported SQL operations, like filters and aggregations, directly to Teradata and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations). Its built-in dynamic metadata querying allows you to work with and analyze Teradata data using native data types.

Install the CData JDBC Driver in Azure

To work with live Teradata data in Databricks, install the driver on your Azure cluster.

  1. Navigate to your Databricks administration screen and select the target cluster.
  2. On the Libraries tab, click "Install New."
  3. Select "Upload" as the Library Source and "Jar" as the Library Type.
  4. Upload the JDBC JAR file (cdata.jdbc.teradata.jar) from the installation location (typically C:\Program Files\CData\CData JDBC Driver for Teradata\lib).

Connect to Teradata from Databricks

With the JAR file installed, we are ready to work with live Teradata data in Databricks. Start by creating a new notebook in your workspace. Name the notebook, select Python as the language (though Scala is available as well), and choose the cluster where you installed the JDBC driver. When the notebook launches, we can configure the connection, query Teradata, and create a basic report.

Configure the Connection to Teradata

Connect to Teradata by referencing the class for the JDBC Driver and constructing a connection string to use in the JDBC URL.

driver = "cdata.jdbc.teradata.TeradataDriver"
url = "jdbc:teradata:User=myuser;Password=mypassword;Server=localhost;Database=mydatabase;"

Built-in Connection String Designer

For assistance in constructing the JDBC URL, use the connection string designer built into the Teradata JDBC Driver. Either double-click the JAR file or execute the jar file from the command-line.

java -jar cdata.jdbc.teradata.jar

Fill in the connection properties and copy the connection string to the clipboard.

To connect to Teradata, provide authentication information and specify the database server name.

  • User: Set this to the username of a Teradata user.
  • Password: Set this to the password of the Teradata user.
  • DataSource: Specify the Teradata server name, DBC Name, or TDPID.
  • Port: Specify the port the server is running on.
  • Database: Specify the database name. If not specified, the default database is used.

Load Teradata Data

Once the connection is configured, you can load Teradata data as a dataframe using the CData JDBC Driver and the connection information.

remote_table = spark.read.format ( "jdbc" ) \
	.option ( "driver" , driver) \
	.option ( "url" , url) \
	.option ( "dbtable" , "NorthwindProducts") \
	.load ()

Display Teradata Data

Check the loaded Teradata data by calling the display function.

display (remote_table.select ("ProductId"))

Analyze Teradata Data in Azure Databricks

If you want to process data with Databricks SparkSQL, register the loaded data as a Temp View.

remote_table.createOrReplaceTempView ( "SAMPLE_VIEW" )

The SparkSQL below retrieves the Teradata data for analysis.

% sql

SELECT ProductId, ProductName FROM NorthwindProducts WHERE CategoryId = 5

The data from Teradata is only available in the target notebook. If you want to use it with other users, save it as a table.

remote_table.write.format ( "parquet" ) .saveAsTable ( "SAMPLE_TABLE" )

Download a free, 30-day trial of the CData JDBC Driver for Teradata and start working with your live Teradata data in Apache NiFi. Reach out to our Support Team if you have any questions.