Process & Analyze Zoho Inventory Data in Databricks (AWS)



Use CData, AWS, and Databricks to perform data engineering and data science on live Zoho Inventory Data.

Databricks is a cloud-based service that provides data processing capabilities through Apache Spark. When paired with the CData JDBC Driver, customers can use Databricks to perform data engineering and data science on live Zoho Inventory data. This article walks through hosting the CData JDBC Driver in AWS, as well as connecting to and processing live Zoho Inventory data in Databricks.

With built-in optimized data processing, the CData JDBC Driver offers unmatched performance for interacting with live Zoho Inventory data. When you issue complex SQL queries to Zoho Inventory, the driver pushes supported SQL operations, like filters and aggregations, directly to Zoho Inventory and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations). Its built-in dynamic metadata querying allows you to work with and analyze Zoho Inventory data using native data types.

Install the CData JDBC Driver in Databricks

To work with live Zoho Inventory data in Databricks, install the driver on your Databricks cluster.

  1. Navigate to your Databricks administration screen and select the target cluster.
  2. On the Libraries tab, click "Install New."
  3. Select "Upload" as the Library Source and "Jar" as the Library Type.
  4. Upload the JDBC JAR file (cdata.jdbc.zohoinventory.jar) from the installation location (typically C:\Program Files\CData[product_name]\lib).

Access Zoho Inventory Data in your Notebook: Python

With the JAR file installed, we are ready to work with live Zoho Inventory data in Databricks. Start by creating a new notebook in your workspace. Name the notebook, select Python as the language (though Scala is available as well), and choose the cluster where you installed the JDBC driver. When the notebook launches, we can configure the connection, query Zoho Inventory, and create a basic report.

Configure the Connection to Zoho Inventory

Connect to Zoho Inventory by referencing the JDBC Driver class and constructing a connection string to use in the JDBC URL. Additionally, you will need to set the RTK property in the JDBC URL (unless you are using a Beta driver). You can view the licensing file included in the installation for information on how to set this property.

Step 1: Connection Information

driver = "cdata.jdbc.zohoinventory.ZohoInventoryDriver"
url = "jdbc:zohoinventory:RTK=5246...;OrganizationId=YourOrganizationId;AccountsServer=YourAccountServerURL;InitiateOAuth=GETANDREFRESH"

Built-in Connection String Designer

For assistance in constructing the JDBC URL, use the connection string designer built into the Zoho Inventory JDBC Driver. Either double-click the JAR file or execute the jar file from the command-line.

java -jar cdata.jdbc.zohoinventory.jar

Fill in the connection properties and copy the connection string to the clipboard.

In order to connect to Zoho Inventory, set the following connection properties:

  • OrganizationId: set this to the ID associated with your specific Zoho Inventory organization
  • InitiateOAuth: set the to "GETANDREFRESH"
  • AccountsServer (Optional): set this full Account Server URL (only when manually refreshing the OAuth token)

The connectors use OAuth to authenticate with Zoho Inventory. For more information, refer to the Getting Started section of the Help documentation.

Load Zoho Inventory Data

Once you configure the connection, you can load Zoho Inventory data as a dataframe using the CData JDBC Driver and the connection information.

Step 2: Reading the data

remote_table = spark.read.format ( "jdbc" ) \
	.option ( "driver" , driver) \
	.option ( "url" , url) \
	.option ( "dbtable" , "Contacts") \
	.load ()

Display Zoho Inventory Data

Check the loaded Zoho Inventory data by calling the display function.

Step 3: Checking the result

display (remote_table.select ("Id"))

Analyze Zoho Inventory Data in Databricks

If you want to process data with Databricks SparkSQL, register the loaded data as a Temp View.

Step 4: Create a view or table

remote_table.createOrReplaceTempView ( "SAMPLE_VIEW" )

With the Temp View created, you can use SparkSQL to retrieve the Zoho Inventory data for reporting, visualization, and analysis.

% sql

SELECT Id, CustomerName FROM SAMPLE_VIEW ORDER BY CustomerName DESC LIMIT 5

The data from Zoho Inventory is only available in the target notebook. If you want to use it with other users, save it as a table.

remote_table.write.format ( "parquet" ) .saveAsTable ( "SAMPLE_TABLE" )

Download a free, 30-day trial of the CData JDBC Driver for Zoho Inventory and start working with your live Zoho Inventory data in Databricks. Reach out to our Support Team if you have any questions.

Ready to get started?

Download a free trial of the Zoho Inventory Driver to get started:

 Download Now

Learn more:

Zoho Inventory Icon Zoho Inventory JDBC Driver

Rapidly create and deploy powerful Java applications that integrate with Zoho Inventory.